skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Alexander_X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, a portable venturi tube capable of measuring bidirectional respiratory flow is developed and correlated the measurements to pulmonary function. Pressure signals are transduced using flexible and compressible capacitive foam sensors embedded into the wall of the device. In this configuration, the sensors are able to provide differential pressure readings, from which the airflow rate passing through the tube could be extrapolated. Utilizing the venturi effect, the geometry of the spirometer tube is designed through finite element analysis to measure respiratory airflow during inhalation and exhalation. The device tube is 3D‐printed and used to measure tidal breathing and deep breathing, along with peak expiratory flow rates, on a healthy individual. This spirometer design allows for easy‐to‐use point‐of‐care diagnoses and has the potential to improve the care of respiratory illnesses. 
    more » « less
  2. Abstract Durable and conductive interfaces that enable chronic and high‐resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long‐term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)‐b‐poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) is described. This “block‐brush” provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge–discharge voltage sweeps on a multiarray neural electrode. In addition, the block‐brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application. 
    more » « less
  3. Abstract Epidermal sensors for remote healthcare and performance monitoring require the ability to operate under the effects of bodily motion, heat, and perspiration. Here, the use of purpose‐synthesized polymer‐based dry electrodes and graphene‐based strain gauges to obtain measurements of swallowed volume under typical conditions of exercise is evaluated. The electrodes, composed of the common conductive polymer poly(3,4 ethylenedioxythiophene) (PEDOT) electrostatically bound to poly(styrenesulfonate)‐b‐poly(poly(ethylene glycol) methyl ether acrylate) (PSS‐b‐PPEGMEA), collect surface electromyography (sEMG) signals on the submental muscle group, under the chin. Simultaneously, the deformation of the surface of the skin is measured using strain gauges comprising single‐layer graphene supporting subcontinuous coverage of gold and a highly plasticized composite containing PEDOT:PSS. Together, these materials permit high stretchability, high resolution, and resistance to sweat. A custom printed circuit board (PCB) allows this multicomponent system to acquire strain and sEMG data wirelessly. This sensor platform is tested on the swallowing activity of a cohort of 10 subjects while walking or cycling on a stationary bike. Using a machine learning (ML) model, it is possible to predict swallowed volume with absolute errors of 36% for walking and 43% for cycling. 
    more » « less
  4. Abstract Crosslinking is a ubiquitous strategy in polymer engineering to increase the thermomechanical robustness of solid polymers but has been relatively unexplored in the context of π‐conjugated (semiconducting) polymers. Notwithstanding, mechanical stability is key to many envisioned applications of organic electronic devices. For example, the wide‐scale distribution of photovoltaic devices incorporating conjugated polymers may depend on integration with substrates subject to mechanical insult—for example, road surfaces, flooring tiles, and vehicle paint. Here, a four‐armed azide‐based crosslinker (“4Bx”) is used to modify the mechanical properties of a library of semiconducting polymers. Three polymers used in bulk heterojunction solar cells (donors J51 and PTB7‐Th, and acceptor N2200) are selected for detailed investigation. In doing so, it is shown that low loadings of 4Bx can be used to increase the strength (up to 30%), toughness (up to 75%), hardness (up to 25%), and cohesion of crosslinked films. Likewise, crosslinked films show greater physical stability in comparison to non‐crosslinked counterparts (20% vs 90% volume lost after sonication). Finally, the locked‐in morphologies and increased mechanical robustness enable crosslinked solar cells to have greater survivability to four degradation tests: abrasion (using a sponge), direct exposure to chloroform, thermal aging, and accelerated degradation (heat, moisture, and oxygen). 
    more » « less